
1.	1. Um objeto é lançado da superfície da Terra verticalmente para atinge a altura de 7,2 m. (Considere o módulo da aceleração da gr								
	igual a 10 m/s e despreze a resistência do ar.). Qual é o módulo d velocidade com que o objeto foi lançado?								
	A 144m/s	B 14,4m		1,2m/s	D 12m/s.				
2.	 Os espaços de um móvel variam com o tempo de acordo a equação: (=)¹+ (SI). Qual é, em m/s, a velocidade escalar do 								
	móvel no insta			C. 12	D 15				
	A 4.	B 5.		C 12.	D 15.				
3.	Das grandezas natureza escalar I. velocidade II. massa III. forca IV. campo elétr		eões a seguir	assinale aqu	iela que é de				
	A I.	B II.	C III.		D IV.				
4. A	A medir a ten	strumento que ser nperatura . elocidade do vent	•	B medir o te D orientação					
		r mantido à mesm stência é constant B força		e dá a essa c					
6.		angular, ω , de un undos de um reló B $\pi/30$ rad	gio é:		tremidade do D 60 rad/s				
7.	em centímetros 0 c	edida do comprim : m 1 2 3	4 5	6 7	a com divisões				
	00.	s abaixo melhor r	40		haste?				
	A 5,20 cm.	B 5,240 cm.		5 cm.	D 5,21 cm.				
8.	Um ponto material parte do repouso em movimento uniformemente variado e, após percorrer 3 m, está animado de uma velocidade escalar de 6,0 m/s. A aceleração escalar do ponto material, em m/s ² é: A 1,0 B 3,0 C 6,0 D 12,0								
9.	Prêmio Nobel elementos rad	o Internacional de Química condicativos Rádio (224 220	cedido a Marie (Ra) e Polônio	Curie pela O (Po). Os	descoberta dos processos de				
	desintegração do Ra em Rn e do Po em Pb são acompanhados respectivamente, da emissão de radiação								
	Ααεα	Βαεβ	Сβе	β Ο γ	γ e β				

10.	Um balão meteorológico fechado tem volume de 50,0 m ao nível do mar,							
	onde a pressão atmosférica é de 1,0x10 Pa e a temperatura é de 27 C. Quando o balão atinge a altitude de 25 km na atmosfera terrestre, a pressão							
	e a temperatura assu	mem, respectivam	ente, os valores de 5,0 x	10 Pa e −63				
	C. Considerando-se que o gás contido no balão se comporta como um gás ideal, o volume do balão nessa altitude é de							
		B 46,7 m ³		1.428,6 m ³				
11.	Qual a intensidade kg, produz acelera	,	cuando sobre um corpo	de massa 2				
	A. 2 kilowatt	B. 2 joule	C. 2 newton	D. 9,8 kgf				
12.	12. Uma conduta de agua se afunila de um raio de 18 mm para 9 mm. Se a sua velocidade da agua na parte larga é de 5 m/s, qual é, em m/s, a velocidade da agua na parte mais estreita da conduta?							
	A 10	B 20	C 40	D 60				
13.		o percurso em 1 ho	urso de 60 minutos, ao para e 30 minutos. Qual e	-				
14.	14. Duas forças de módulos F_1 = 8 N e F_2 = 9 N formam entre si um ângulo de 60° . Sendo $\cos 60^\circ = 0.5$ e sen $60^\circ = 0.87$, o módulo da força resultante, em newtons, é, aproximadamente,							
	A 14,7	B 9,4	C 15,6	D 11,4				
15. Um corpo de 5 kg descreve uma trajetória retilínea que obedece à seguinte equação horária: x (t) = 2 - 2t + 2t², onde x é medido em metros e t em segundos. Conclui-se que a intensidade da força resultante do corpo em newtons vale:								
	A 8	B 16	C 20	D 32				
 16. A equação da aceleração de uma partícula oscilante é =- e(+). A aceleração máxima deste movimento é de 								
	A 5π B 4	4 п С -3	Π^2 D 3 Π^2					
17. Dois blocos A e B, de massas mA = 2,0kg e mB = 3,0kg, estão acoplados através de uma corda inextensível e de peso desprezível que passa por uma polia conforme figura. Esses blocos foram abandonados, e, após mover-se por 1,0m, o bloco B encontrava-se a 3,0m do solo quando se soltou da corda. Desprezando-se a massa da polia e quaisquer formas de atrito, o								

tempo necessário, em segundos, para que B chegue ao chão é igual a:

Adote g = 10,0m/s² e despreze o efeito do ar.

17. Uma garota de massa m = 30 kg parte do repouso do ponto M do escorregador mostrado na figura e desce, sem sofrer a acção da força de atrito, em direcção ao ponto N. Sabendo que H = 20 m e que g =10 m/s², qual é, em kJ, a energia cinética da garota ao passar pelo ponto N?

A 4

B 5

C 6

D 8

18. Um atleta atira uma bola de 0,5 kg para cima, com velocidade inicial de 10 m/s. Admita que a energia potencial inicial seja nula. (Use $g = 10 \text{ m/s}^2$.) Com relação a essa situação, é correto afirmar que a energia mecânica total quando a bola estiver no topo da trajetória, é:

A 50 J

B 25 J

C 5,0 J

D nula

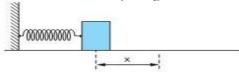
19. Num jogo de "bate ao ombro", o bastão atinge a bola com uma força média de 49N durante 0,001s. Nesse caso, a impulsão será: (1kgf = 9,8N)

A 0,45kgf.s

B 0,5kgf.s

C 0,45N.s

D 0,5N.s


20. As estatísticas indicam que o uso do cinto de segurança deve ser obrigatório para prevenir lesões mais graves em motoristas e passageiros no caso de acidentes. Fisicamente, a função do cinto está relacionada com a:

A Primeira Lei de Newton C Lei de Ampère

B Lei de Snell

D Primeira Lei de Kepler

Um corpo de massa m desloca-se sobre um plano horizontal, sem atrito. 21. Ao chocar-se com uma mola de constante elástica k, causa uma deformação máxima x, como indica a figura. No momento do choque, a quantidade de movimento do corpo é igual a:

 $\mathbf{A} x^2 m k$

B. $x m^2 k^2$

 $C x(mk)^{\frac{1}{2}}$

22. A equação $^{22}Na \rightarrow {}^{0}e + {}^{22}Ne$

A alfa

B beta menos

C gama

do sódio-22, corresponde a desintegração... **D** beta mais

23. O ramo da Física que estuda a troca de calor entre os corpos chama-se... C hidrodinâmica A mecânica **B** calorimetria **D** estática

24. A água escoa normalmente em um rio. Para a parte mais larga do rio, pode-se dizer que a pressão é...

A constante

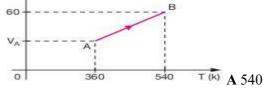
B nula

C maior

D menor

25. Um termômetro graduado na escala Fahrenheit indica uma temperatura de 68 °F. A correspondente indicação de um termômetro graduado na escala Celsius é:

A 68


B 40

C 32

D 20

D 25

26. O gráfico representa a transformação de uma certa quantidade de gás ideal do estado A para o estado B. O valor de $V_{\rm A}$ é:

27. Uma certa massa de um gás perfeito é colocada em um recipiente, ocupando volume de 4,0 *l*, sob pressão de 3,0 atmosferas e temperatura de 27 °C. Sofre, então, uma transformação isocórica e sua pressão passa a 5,0 atmosferas. Nessas condições, a nova temperatura do gás, em °C, passa a ser:

A 45

B 127

C 227

B 60

C 40

D 327

28. Uma pessoa está vestindo uma camisa que possui impresso o número 54. Se essa pessoa se olhar em espelho plano, verá a imagem do número como:

A 54

45 **B**

C 24

 $54 \, \mathbf{G}$

29. Um raio de luz passa no vácuo, onde sua velocidade é 3 10⁸ m/s, para um líquido, onde a velocidade passa a ser 2,4 10⁸ m/s. O índice de refração do líquido é:

A 1,25

B 1.5

C 1.8

D 7,2

- 30. Um espelho plano fornece uma imagem de um objeto real:

 A real e direita, B real e invertida. C virtual e direita D virtual e invertida
- 31. A função de trabalho do sódio é 2,3 eV. Qual é, em nm, o comprimento de onda máximo da luz que deve ser usada para conseguir obter fotoelectrões emitidos a partir de uma superfície de sódio? ($h = 4.14 \cdot 10^{14} \text{V} \cdot \text{:} = 3 \cdot 10^{9} \text{/:} 1 = 10^{9}$)

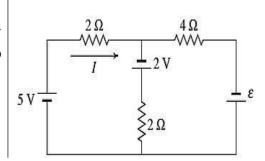
A. 5,4

B. 54

C. 540

D. 5400

32. Um fio metálico é percorrido por uma corrente elétrica contínua e constante. Uma seção transversal do fio é atravessada por uma carga de 16 C em 5 segundos. A intensidade da corrente elétrica nesse fio é igual a:

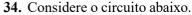

A 3.2 A

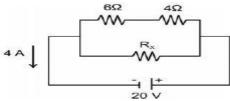
B 5.0 A

C 11 A

D 80 A

33. No circuito da figura, sabendo que a corrente *I* é igual a 2,5 *A*, determine o valor da fem (ε).




A. 6 *V*

B. 7 *V*

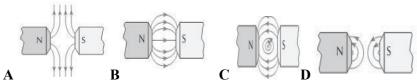
C. 2 *V*

D. 10 V

No circuito, por onde passa uma corrente elétrica de 4.A, três resistores estão conectados a uma fonte ideal de força eletromotriz de 20 V. Os valores da resistência total deste circuito e da resistência R são, respectivamente,

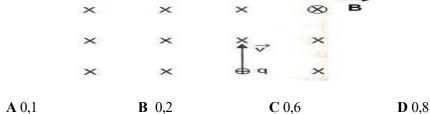
A 0.8Ω e 2.6 Ω **B** 0.8 Ω e 4.0 Ω **C** 5.0 Ω e 5.0 Ω **D** 5.0 Ω e 10.0 Ω

35. O Sódio - 24 sofre desintegração gama e o seu período de semidesintegração é de 15 horas . Uma amostra deste isótopo tem uma actividade de 240 Bq . A actividade após 60 horas é de:


- 36. Um condutor recto de 50 cm de comprimento, é colocado perpendicularmente às linhas do campo magnético de intensidade
 = 2.10⁻⁸ e é atravessado pela corrente = 2. Qual é, em Newton, o valor da força magnética?
 - **A**. 2.10^{-6}
- **B.** 3. 10⁻⁶
- $C. 2.10^{-8}$
- **D.** 3. 10⁶
- 37. A propriedade das ondas electromagnéticas de atravessar obstáculos diz-se:

 A refração

 B reflexão


 C dispersão

 D interferência
- **38.** Assinale o diagrama que melhor representa as linhas de indução magnética criadas entre os ímãs.

39. Uma partícula positivamente carregada com carga de 20μC penetra perpendicularmente em um campo magnético uniforme, de intensidade 3,0

T, com velocidade de 1,0 x 10⁴ m/s, conforme a figura. A intensidade da força magnética a que a partícula fica sujeita tem valor, em newtons, igual a:

40. A fissão de Urânio – 235 ($^{235}_{92}U$) através do bombardeamento de neutrões, pode produzir Lantânio – 148 ($^{148}_{57}La$) e Bromo – 85 ($^{85}_{35}Br$). As massas atómicas relativas são: U=235,10~u.m.a.;~n=1,009~u.m.a La=147,90~u.m.a.;~Br=84,97~u.m.a.

A reacção correcta de fissão do Urânio é:

$$\mathbf{A}_{92}^{235}U + {}^{1}_{0}n \rightarrow {}^{148}_{57}La + {}^{85}_{35}Br + \left({}^{1}_{0}n \right)$$

$$\mathbf{B} \stackrel{235}{_{92}}U + {}^{1}_{0}n \to {}^{148}La + {}^{85}_{35}Br + 3 \Big({}^{1}_{0}n \Big)$$

$$C_{92}^{235}U + {}^{1}_{0}n \rightarrow {}^{148}La + {}^{85}_{35}Br + 2 \left({}^{1}_{0}n \right)$$

$$\mathbf{D}_{92}^{235}U + {}^{1}_{0}n \to {}^{148}_{57}La + {}^{85}_{35}Br + 4 \Big({}^{1}_{0}n \Big)$$

Fim

GUIÃO DE CORRECÇÃO DO EXAME DE FÍSICA – 2024

Perg	Respostas	Cotação		Perg	Respostas	Cotação
1.	C	0.5	1	21.	C	0.5
2.	A	0.5	1	22.	В	0.5
3.	В	0.5		23.	C	0.5
4.	D	0.5		24.	D	0.5
5.	C	0.5		25.	D	0.5
6.	В	0.5		26.	В	0.5
7.	В	0.5		27.	C	0.5
8.	C	0.5		28.	D	0.5
9.	A	0.5		29.	A	0.5
10.	C	0.5		30.	В	0.5
11.	C	0.5		31.	C	0.5
12.	A	0.5		32.	A	0.5
13.	В	0.5		33.	A	0.5
14.	A	0.5		34.	D	0.5
15.	C	0.5		35.	D	0.5
16.	D	0.5		36.	C	0.5
17	A	0.5		37	В	0.5
18	В	0.5		38	В	0.5
19	В	0.5		39	D	0.5
20	A	0.5		40	В	0.5