1.				orizontal e para a direita,			
	estamos definindo a A Escalar	velocidade como un B Algébrica	na grandeza: C Llinear	D Vetorial			
2.	Considere um movii gráfico.	mento cuja posição 5 (m.) 40 20 5 10 15	t(s)	t, está representado no			
A distâ	ncia percorrida pelo n	-40 nóvel entre os instan	tes $t = 0$ e $t = 20$ s, em n	netros, vale:			
	A -40	B 0	D 80				
3.	Considerando o gráfi	ico da pergunta 2, o	móvel passa pela orige	m no instante:			
	A 0,0s	B 5,0s	C 10,0s	D 20,0s			
4.	onde v representa a	velocidade escalar	em m/s e t, o tempo e ícula no intervalo (0 s,	om a equação v =-4 + t, m segundos, a partir do 8 s) é: 4 m			
5.	_	le de 6 m/s. Nessa		te e, após percorrer 8 m, eração, em metros por D 2			
6.			n/s ² . Desprezando o atr	l onde a aceleração da rito, o corpo toca o solo /s D igual a 10 m/s			
7.	Um corpo é lançado verticalmente para cima com uma velocidade inicial de $v_0 = 30$ m/s. Sendo $g = 10$ m/s ² e desprezando a resistência do ar qual será a velocidade de corpo 2,0 s após o lançamento? A 10 m/s B 20 m/s C 30 m/s D 40 m/s						
8.	da agua na parte largestreita da conduta?		é, em m/s, a velocidad	nm. Se a sua velocidade e da agua na parte mais			
	A 10	B 20	C 40	D 60			
9.				$g = 10 \text{ m/s}^2$. Ele passa velocidade de 50 m/s. A			

10. Considere as afirmações acerca do movimento circular uniforme:

B 140 m

C 120 m

- I. Não há aceleração, pois não há variação do vetor velocidade.
- II. A aceleração é um vetor de intensidade constante.

distância entre os pontos A e B é:

A 240 m

D 100 m

III. A direção da aceleração é perpendicular à velocidade e ao plano da trajetória. Dessas afirmações, somente:

A I é correta

B II é correta

C I e II são corretas D II e III são corretas

11. Duas forças de módulos F_1 = 8 N e F_2 = 9 N formam entre si um ângulo de 60°. Sendo cos 60° = 0,5 e sen 60° = 0,87, o módulo da força resultante, em newtons, é, aproximadamente,

A 14,7

B 9,4

C 15,6

D 11,4

12. Um corpo de 4 kg descreve uma trajetória retilínea que obedece à seguinte equação horária: $x(t) = 2 - 2t - 4t^2$, onde x é medido em metros e t em segundos. Conclui-se que a intensidade da força resultante do corpo em newtons vale:

A 16

RΩ

C.32

D 64

13. Um atleta atira uma bola de 0,5 kg para cima, com velocidade inicial de 10 m/s. Admita que a energia potencial inicial seja nula. (Use g = 10 m/s².) Com relação a essa situação, é correto afirmar que a energia mecânica total quando a bola estiver no topo da trajetória, é:

A 50 J

B 25 J

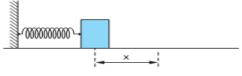
C 5.0 J

D nula

14. Num jogo de "bate ao ombro", o bastão atinge a bola com uma força média de 490N durante 0,01s. Nesse caso, a impulsão será: (1kgf = 9,8N)

A 0,45kgf.s

B 0,5kgf.s


C 0.45N.s

D 0,5N.s

15. As estatísticas indicam que o uso do cinto de segurança deve ser obrigatório para prevenir lesões mais graves em motoristas e passageiros no caso de acidentes. Fisicamente, a função do cinto está relacionada com a:

A Primeira Lei de Newton B Lei de Snell C Lei de Ampère D Primeira Lei de Kepler

16. Um corpo de massa m desloca-se sobre um plano horizontal, sem atrito. Ao chocar-se com uma mola de constante elástica k, causa uma deformação máxima x, como indica a figura. No momento do choque, a quantidade de movimento do corpo é igual a:

 $\mathbf{A} x^2 mk$

B. $x m^2 k^2$

 $C x(mk)^{\frac{1}{2}}$

 $\mathbf{D} \mathbf{r}^{\frac{1}{2}} m \mathbf{k}$

17. A reacção de fissão de um nucliodo de Cúrio – 244 , pode ser representada da seguinte forma:

$$^{244}_{96}Cm + ^{1}_{0}n \rightarrow ^{97}_{55}Cs + ^{144}_{47}Ho + (A)^{1}_{0}n + (B)^{0}_{-1}e$$

De acordo com a reacção, quais são os números que representam, respectivamente, as letras "A" e "B"?

A 2 e 3

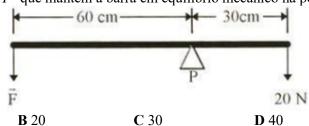
B 3 e 2

C 4 e 6

D 6 e 4

18. Segundo o manual da moto Honda CG125, o valor aconselhado do torque, para apertar a porca do eixo dianteiro, sem danificá-la, é 60 Nm.

Usando uma chave de boca semelhante à da figura, a força que produzirá esse torque é:


A 3,0 N

B 12.0 N

C 30,0 N

D 300.0 N

19. A barra da figura é um corpo rígido de peso desprezível, apoiada no ponto P. Qual o módulo da força F que mantém a barra em equilíbrio mecânico na posição horizontal?

20. Uma coroa contém 579 g de ouro (densidade 19,3 g/cm³), 90 g de cobre (densidade 9,0 g/cm³), 105 g de prata (densidade 10,5 g/cm³). Se o volume final dessa coroa corresponder à soma dos volumes de seus três componentes, a densidade dela, em g/cm³, será:

A 10,5

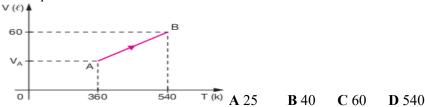
A 10

B 12,9

C 15,5

D 19,3

21. Um termômetro graduado na escala Celsius indica uma temperatura de 20 °C. A correspondente indicação de um termômetro graduado na escala Fahrenheit é:


 \mathbf{A} 80

B 68

C50

D 22

22. O gráfico representa a transformação de uma certa quantidade de gás ideal do estado A para o estado B. O valor de V_A é:

23. Uma certa massa de um gás perfeito é colocada em um recipiente, ocupando volume de 4,0 l, sob pressão de 3,0 atmosferas e temperatura de 27 °C. Sofre, então, uma transformação isocórica e sua pressão passa a 5,0 atmosferas. Nessas condições, a nova temperatura do gás, em °C, passa a ser:

A 45

B 127

C 227

D 327

24. Uma pessoa está vestindo uma camisa que possui impresso o número 54. Se essa pessoa se olhar em espelho plano, verá a imagem do número como:

A 54

45 **a**

 \mathbf{C}^{24}

 $54 \, \mathbf{q}$

25. Um raio de luz passa no vácuo, onde sua velocidade é 3 108 m/s, para um líquido, onde a velocidade passa a ser 2,4 10⁸ m/s. O índice de refração do líquido é:

A 1,25

B 1.5

C 1,8

D 7,2

26. Um espelho plano fornece uma imagem de um objeto real:

A real e direita,

B real e invertida.

C virtual e direita D virtual e invertida

27. Uma onda monocromática de frequência 2,0.10¹⁴ Hz propaga-se no vácuo onde sua velocidade é c = 3,0.108 m/s. O seu comprimento de onda em angstrons (1 angstron = 10⁻¹⁰ m) é:

 $A 1,5.10^2$

 $\mathbf{B} \ 1.5.10^4$

 \mathbb{C} 2,0.10²

 $\mathbf{D} \ 2,0.10^{4}$

28. Um móvel executa um movimento harmônico simples de equação $x(t) = 8 \cdot \cos(\frac{\pi}{\epsilon}t)$ onde t é dado em segundos e x em metros. Após 2,0 s, a elongação do movimento é:

A 3,5 m

B 8.0 m

C 2,0 m

D 4.0 m

29. O campo elétrico $\overrightarrow{E_1}$ de uma carga puntiforme q a uma distância d tem intensidade x. O campo elétrico $\overrightarrow{E_2}$ de uma carga a uma distância $\emph{2d}$ tem intensidade:

 $\mathbf{B} \frac{x}{4}$

 $\mathbf{C} x$

 $\mathbf{D} 2x$

30. Seja V₁ o potencial elétrico num ponto P situado a uma distância R de uma carga q₁. Se reduzirmos pela metade a distância R, o novo potencial, V₂, se relacionará com V₁ da seguinte maneira:

A $V_2 = 2 V_1$

B $V_2 = \frac{V_1}{2}$ **C** $V_2 = 4 V_1$ **D** $V_2 = \frac{V_1}{4}$

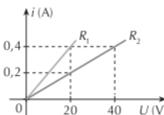
31. Um fio metálico é percorrido por uma corrente elétrica contínua e constante. Uma seção transversal do fio é atravessada por uma carga de 16 C em 5 segundos. A intensidade da corrente elétrica nesse fio é igual a:

A 3,2 A

B 5,0 A

C 11 A

D 80 A


32. Um condutor é percorrido por uma corrente elétrica de intensidade i = 800 mA. Conhecida a carga elétrica elementar, $e = 1.6 \, 10^{-19} \, \text{C}$, o número de elétrons que atravessa uma seção normal desse condutor, por segundo, é:

A 8,0 10 ¹⁹

B 5.0 10^{-18}

D 5.0 10^{20}

- 33. Observe o gráfico abaixo. O comportamento de R₁ e R₂ não se altera para valores de ddp até 100 V. Ao analisar o gráfico, um aluno concluiu que, para valores abaixo de 100 V:
- I. A resistência de cada um dos condutores é constante, isto é, eles são ôhmicos.
- II. O condutor R₁ tem resistência elétrica maior que o condutor R₂.
- III. Ao ser aplicada uma ddp de 80 V aos extremos de R2, nele passará uma corrente de 0,8 A.

Quais as conclusões corretas?

A apenas I e III

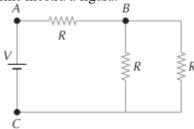
B apenas II e III

C apenas II

D apenas I

34. Nos choques elétricos, as correntes que fluem através do corpo humano podem causar danos biológicos que, de acordo com a intensidade da corrente, são classificados segundo a tabela abaixo.

	Corrente elétrica	Dano biológico		
-1	até 10 mA	dor e contração muscular		
П	de 10 mA até 20 mA	aumento das contrações musculares		
Ш	de 20 mA até 100 mA	parada respiratória		
IV	de 100 mA até 3 A	fibrilação ventricular que pode ser fatal		
V	acima de 3 A	parada cardíaca, queimaduras graves		


Considerando que a resistência do corpo em situação normal é da ordem de 1.500Ω , em qual das faixas acima se enquadra uma pessoa sujeita a uma tensão elétrica de 220 V?

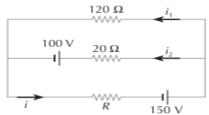
ΑI

C III

D IV

35. Um circuito com 3 resistores iguais é submetido a uma diferença de potencial V entre os pontos A e C, conforme mostra a figura.

A diferença de potencial que se estabelece entre os pontos A e B é:


36. No circuito abaixo, os geradores são ideais, as correntes elétricas têm os sentidos indicados e i_1 = 1A. O valor da resistência R é:

 $\mathbf{A} \ 6 \ \Omega$

 $\mathbf{B} 9 \Omega$

C 12 Ω 120 O

 \mathbf{D} 15 Ω

37. As antenas das emissoras de rádio emitem ondas eletromagnéticas que se propagam na atmosfera com a velocidade da luz (3,0 10 5 km/s) e com freqüência que variam de uma estação para a outra. A rádio CBN emite uma onda de frequência 90,5 MHz e comprimento de onda aproximadamente igual a:

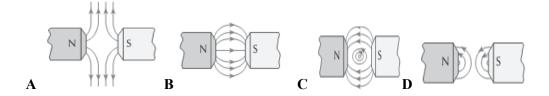
A 2,8 m

B 3,3 m

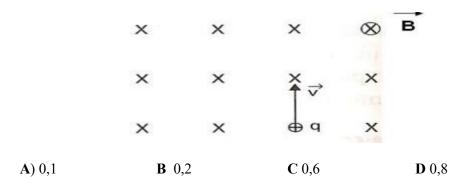
C 4,2 m

D 4,9 m

38. O feixe de laser de uma fonte tem comprimento de onda 6,0 10 -7 m e velocidade de propagação no ar 3,0 10 8 m/s. A freqüência dessa radiação é, em Hz:


 \mathbf{A} 50,0 10^{15}

 $\mathbf{B} \ 0.50 \ 10^{15}$


C 2,00 10 ¹⁵

 \mathbf{D} 20,0 10¹⁵

39. Assinale o diagrama que melhor representa as linhas de indução magnética criadas entre os ímãs.

40. Uma partícula positivamente carregada com carga de $20\mu C$ penetra perpendicularmente em um campo magnético uniforme, de intensidade 4,0 T, com velocidade de 1,0 x 10^4 m/s, conforme a figura. A intensidade da força magnética a que a partícula fica sujeita tem valor, em newtons, igual a:

Fim

GUIÃO DE CORRECÇÃO DO EXAME DE FÍSICA – 2017

Perg	Respostas	Cotação	Perg	Respostas	Cotação
1.	D	0.5	21.	В	0.5
2.	D	0.5	22.	В	0.5
3.	C	0.5	23.	C	0.5
4.	В	0.5	24.	D	0.5
5.	D	0.5	25.	A	0.5
6.	A	0.5	26.	C	0.5
7.	A	0.5	27.	В	0.5
8.	В	0.5	28.	D	0.5
9.	C	0.5	29.	В	0.5
10.	В	0.5	30.	A	0.5
11.	A	0.5	31.	A	0.5
12.	C	0.5	32.	В	0.5
13.	В	0.5	33.	A	0.5
14.	В	0.5	34.	D	0.5
15.	A	0.5	35.	В	0.5
16.	C	0.5	36.	D	0.5
17.	C	0.5	37.	В	0.5
18.	C	0.5	38.	В	0.5
19.	A	0.5	39.	В	0.5
20.	C	0.5	40.	D	0.5